119 research outputs found

    Closed P2P system for PVR-based file sharing

    Full text link

    Interpretable machine learning for prediction of clinical outcomes in acute ischemic stroke

    Get PDF
    Background and aimsPredicting the prognosis of acute ischemic stroke (AIS) is crucial in a clinical setting for establishing suitable treatment plans. This study aimed to develop and validate a machine learning (ML) model that predicts the functional outcome of AIS patients and provides interpretable insights.MethodsWe included AIS patients from a multicenter stroke registry in this prognostic study. ML-based methods were utilized to predict 3-month functional outcomes, which were categorized as either favorable [modified Rankin Scale (mRS) ≤ 2] or unfavorable (mRS ≥ 3). The SHapley Additive exPlanations (SHAP) method was employed to identify significant features and interpret their contributions to the predictions of the model.ResultsThe dataset comprised a derivation set of 3,687 patients and two external validation sets totaling 250 and 110 patients each. Among them, the number of unfavorable outcomes was 1,123 (30.4%) in the derivation set, and 93 (37.2%) and 32 (29.1%) in external sets A and B, respectively. Among the ML models used, the eXtreme Gradient Boosting model demonstrated the best performance. It achieved an area under the receiver operating characteristic curve (AUC-ROC) of 0.790 (95% CI: 0.775–0.806) on the internal test set and 0.791 (95% CI: 0.733–0.848) and 0.873 (95% CI: 0.798–0.948) on the two external test sets, respectively. The key features for predicting functional outcomes were the initial NIHSS, early neurologic deterioration (END), age, and white blood cell count. The END displayed noticeable interactions with several other features.ConclusionML algorithms demonstrated proficient prediction for the 3-month functional outcome in AIS patients. With the aid of the SHAP method, we can attain an in-depth understanding of how critical features contribute to model predictions and how changes in these features influence such predictions

    Deterministic bead-in-droplet ejection utilizing an integrated plug-in bead dispenser for single bead-based applications

    Get PDF
    This paper presents a deterministic bead-in-droplet ejection (BIDE) technique that regulates the precise distribution of microbeads in an ejected droplet. The deterministic BIDE was realized through the effective integration of a microfluidic single-particle handling technique with a liquid dispensing system. The integrated bead dispenser facilitates the transfer of the desired number of beads into a dispensing volume and the on-demand ejection of bead-encapsulated droplets. Single bead-encapsulated droplets were ejected every 3 s without any failure. Multiple-bead dispensing with deterministic control of the number of beads was demonstrated to emphasize the originality and quality of the proposed dispensing technique. The dispenser was mounted using a plug-socket type connection, and the dispensing process was completely automated using a programmed sequence without any microscopic observation. To demonstrate a potential application of the technique, bead-based streptavidin-biotin binding assay in an evaporating droplet was conducted using ultralow numbers of beads. The results evidenced the number of beads in the droplet crucially influences the reliability of the assay. Therefore, the proposed deterministic bead-in-droplet technology can be utilized to deliver desired beads onto a reaction site, particularly to reliably and efficiently enrich and detect target biomolecules.112Ysciescopu

    N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries

    Get PDF
    N-doped sites at CNT and graphene trigger spontaneous encapsulation of Si particles by simple pH control at room temperature. Significantly, N-doped CNT encapsulated Si composite electrode materials show remarkable cycle life and rate performance in battery operations. Superior capacity retention of 79.4% is obtained after 200 cycles and excellent rate capability of 914 mA h g -1 is observed at a 10 C rate.close13

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Architectural features for Scalable shared memory multiprocessors

    No full text
    Ph.D.Umakishore Ramachandra

    Finger-triggered portable PDMS suction cup for equipment-free microfluidic pumping

    No full text
    Abstract This study presents a finger-triggered portable polydimethylsiloxane suction cup that enables equipment-free microfluidic pumping. The key feature of this method is that its operation only involves a “pressing-and-releasing” action for the cup placed at the outlet of a microfluidic device, which transports the fluid at the inlet toward the outlet through a microchannel. This method is simple, but effective and powerful. The cup is portable and can easily be fabricated from a three-dimensional printed mold, used without any pre-treatment, reversibly bonded to microfluidic devices without leakage, and applied to various material-based microfluidic devices. The effect of the suction cup geometry and fabrication conditions on the pumping performance was investigated. Furthermore, we demonstrated the practical applications of the suction cup by conducting an equipment-free pumping of thermoplastic-based microfluidic devices and water-in-oil droplet generation
    corecore